Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell.
نویسندگان
چکیده
Exoelectrogenic bacteria have potential for many different biotechnology applications due to their ability to transfer electrons outside the cell to insoluble electron acceptors, such as metal oxides or the anodes of microbial fuel cells (MFCs). Very few exoelectrogens have been directly isolated from MFCs, and all of these organisms have been obtained by techniques that potentially restrict the diversity of exoelectrogenic bacteria. A special U-tube-shaped MFC was therefore developed to enrich exoelectrogenic bacteria with isolation based on dilution-to-extinction methods. Using this device, we obtained a pure culture identified as Ochrobactrum anthropi YZ-1 based on 16S rRNA gene sequencing and physiological and biochemical characterization. Strain YZ-1 was unable to respire using hydrous Fe(III) oxide but produced 89 mW/m(2) using acetate as the electron donor in the U-tube MFC. Strain YZ-1 produced current using a wide range of substrates, including acetate, lactate, propionate, butyrate, glucose, sucrose, cellobiose, glycerol, and ethanol. Like another exoelectrogenic bacterium (Pseudomonas aeruginosa), O. anthropi is an opportunistic pathogen, suggesting that electrogenesis should be explored as a characteristic that confers advantages to these types of pathogenic bacteria. Further applications of this new U-tube MFC system should provide a method for obtaining additional exoelectrogenic microorganisms that do not necessarily require metal oxides for cell respiration.
منابع مشابه
Isolation and Analysis of Novel Electrochemically Active Bacteria for Enhanced Power Generation in Microbial Fuel Cells
PROJECT SUMMARY Bacteria capable of exocellular transfer of electrons to solid surfaces, called exoelectrogens, make it possible to obtain electricity from the breakdown of organic matter in microbial fuel cells (MFCs). We obtained several new exoelectrogenic bacteria during this project. We isolated Rhodopseudomonas palustris DX-1, and demonstrated for the first time that a pure culture could ...
متن کاملComparison of Exoelectrogenic Bacteria Detected Using Two Different Methods: U-tube Microbial Fuel Cell and Plating Method
In a microbial fuel cell (MFC), exoelectrogens, which transfer electrons to the electrode, have been regarded as a key factor for electricity generation. In this study, U-tube MFC and plating methods were used to isolate exoelectrogens from the anode of an MFC. Disparate microorganisms were identified depending on isolation methods, despite the use of an identical source. Denaturing gel gradien...
متن کاملUtility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination
Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to ...
متن کاملSimultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from many different biodegradable substrates. When cellulose is used as the substrate, electricity generation requires a microbial community with both cellulolytic and exoelectrogenic activities. Cellulose degradation with electricity production by a pure culture has not been previously demonstrated without additio...
متن کاملMolecular Cloning and Characterization of a Newly Isolated Pyrethroid-Degrading Esterase Gene from a Genomic Library of Ochrobactrum anthropi YZ-1
A novel pyrethroid-degrading esterase gene pytY was isolated from the genomic library of Ochrobactrum anthropi YZ-1. It possesses an open reading frame (ORF) of 897 bp. Blast search showed that its deduced amino acid sequence shares moderate identities (30% to 46%) with most homologous esterases. Phylogenetic analysis revealed that PytY is a member of the esterase VI family. pytY showed very lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 74 10 شماره
صفحات -
تاریخ انتشار 2008